Lagrangian unknottedness in Stein surfaces

نویسنده

  • R. Hind
چکیده

We show that the space of Lagrangian spheres inside the cotangent bundle of the 2-sphere is contractible. We then discuss the phenomenon of Lagrangian unknottedness in other Stein surfaces. There exist homotopic Lagrangian spheres which are not Hamiltonian isotopic, but we show that in a typical case all such spheres are still equivalent under a symplectomorphism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lagrangian Two-spheres Can Be Symplectically Knotted

In the past few years there have been several striking results about the topology of Lagrangian surfaces in symplectic four-manifolds. The general tendency of these results is that many isotopy classes of embedded surfaces do not contain Lagrangian representatives. This is called the topological unknottedness of Lagrangian surfaces; see [4] for a survey. The aim of this paper is to complement t...

متن کامل

Unknotted Strand Routings of Triangulated Meshes

In molecular self-assembly such as DNA origami, a circular strand’s topological routing determines the feasibility of a design to assemble to a target. In this regard, the Chinese-postman DNA scaffold routings of Benson et al. (2015) only ensure the unknottedness of the scaffold strand for triangulated topological spheres. In this paper, we present a cubic-time 5 3 −approximation algorithm to c...

متن کامل

ar X iv : 0 80 9 . 15 36 v 2 [ m at h . D G ] 1 5 Ju n 20 09 Tight Lagrangian surfaces in S 2 × S 2 ∗ Hiroshi

We determine all tight Lagrangian surfaces in S2×S2. In particular, globally tight Lagrangian surfaces in S2 × S2 are nothing but real forms.

متن کامل

Tight Lagrangian surfaces in S 2 × S 2 ∗

We determine all tight Lagrangian surfaces in S 2 × S 2. In particular, globally tight Lagrangian surfaces in S 2 × S 2 are nothing but real forms.

متن کامل

Equiaffine Characterization of Lagrangian Surfaces in R

For non-degenerate surfaces in R, a distinguished transversal bundle called affine normal plane bundle was proposed in [8]. Lagrangian surfaces have remarkable properties with respect to this normal bundle, like for example, the normal bundle being Lagrangian. In this paper we characterize those surfaces which are Lagrangian with respect to some parallel symplectic form in R. Mathematics Subjec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007